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Scaling of impact fragmentation near the critical point
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We investigated two-dimensional brittle fragmentation with a flat impact experimentally, focusing on the
low-impact-energy region near the fragmentation-critical point. We found that the universality class of frag-
mentation transition disagreed with that of percolation. However, the weighted mean mass of the fragments
could be scaled using the pseudo-control-parametermultiplicity. The data for highly fragmented samples
included a cumulative fragment mass distribution that clearly obeyed a power law. The exponent of this power
law was 0.5 and it was independent of sample size. The fragment mass distributions in this regime seemed to
collapse into a unified scaling function using weighted mean fragment mass scaling. We also examined the
behavior of higher-order moments of the fragment mass distributions, and obtained multiscaling exponents that
agreed with those of the simple biased cascade model.

DOI: 10.1103/PhysRevE.68.046105 PACS number~s!: 46.50.1a, 62.20.Mk, 64.60.Ak
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I. INTRODUCTION

From asteroids to nuclei, fragmentation phenomena
be seen everywhere. Many scientists and engineers
been fascinated by the fragmentation process, and muc
fort has been made to understand fragmentation@1#. In par-
ticular, impact fragmentation of brittle solids has been inv
tigated by simulation and experimentally@2–6#. The results
have shown that cumulative fragment mass~or size! distri-
butions exhibit a power-law dependence, in which the ex
nent depends on the dimensionality of the fractured obje
These results do not depend on the details of fragmenta
such as the material the fractured object is made from or
fragmentation method. Consequently, Oddershedeet al. con-
cluded that brittle fragmentation is a self-organized criti
phenomenon@4,7#.

Cumulative distributions obey power-law dependen
when the imparted energy is sufficiently large, but brit
solids do not break when the imparted energy is very sm
Therefore, one might assume that there is a transition in
fragmentation phenomenon. Recently, Kun and Herrm
examined critical behavior in fragmentation transition a
concluded that fragmentation transition belongs to the pe
lation transition universality class@8#. In addition, Campi has
shown that nuclei fragmentation has the same statis
properties as percolation@9#. By contrast, Åstro¨m et al. per-
formed other fragmentation model simulations and obtai
a scaling law whose critical exponents differ from those
percolation@10#.

While there are some simulation results, there have b
no experiments on critical fragmentation. For a proper ana
sis, the existing simulation results must be compared to
perimental data. Here, we experimentally investigate bri
fragmentation as a kind of critical phenomenon, and we
port experimental results for glass tube fragmentation n
the critical point.

*Electronic address: katsurag@asem.kyushu-u.ac.jp
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II. EXPERIMENTAL PROCEDURE

Figure 1 is a schematic illustration of the experimen
apparatus. We used glass tubes~50 mm outside diameter, 2
mm thick, and 150 mm, 100 mm, or 50 mm long! as the
fractured objects. They have two-dimensional~2D! geom-
etry, and it is easy to impart the impact vertically becau
they can stand by themselves. Kun and Herrmann@8# and
Åström et al. @10# performed numerical simulation of 2D
samples.

A glass tube was put in a plastic bag, which was in tu
placed between a hard stainless steel stage~dimensions
400 mm3500 mm350 mm) and a stainless steel pla
(10 mm thick!. The stage was fixed by placing heav
weights on it. A cylindrical brass weight with a flat bottom
~3.77 kg! was dropped on the stainless steel plate vertica
and a planar failure wave propagated to the glass tube f
the impact circle~cross section of the glass tube!. Conse-
quently, the glass tube was cleaved by the impact. This

FIG. 1. Schematic illustration of the experimental apparat
The weight and guide poles were made of brass. Other parts w
made of stainless steel or steel.h is the falling height of the weight.
©2003 The American Physical Society05-1
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type of 2D fragmentation. Four poles (10 mm diamet!
were used as guide poles for the falling brass weight. S
pers for the stainless steel plate were placed at each g
pole to prevent a secondary impact. While the samples w
not annealed after the cutting processing, they had almos
flat end. We used a level in order to check the vertica
between the weight and the stainless steel plate at each
mentation. The variable in this experiment was the height
weight was dropped from.

After fragmentation, we collected the fragments in t
plastic bag and measured the mass of each fragment wit
electronic balance. The data were analyzed, and cumula
fragment mass distributions were obtained. We fracture
total of 60 samples~34:150 mm, 15:100 mm, and 11:50 m
length!. We defined the falling heighth as a length from the
top of stainless steel plate to the bottom of the falling weig
In our experiments, it was set in the range 61 mm<h
<407 mm. This range corresponds to 0.050<e<0.251
~N m/g! in terms of the imparted energy~released potentia
energy of the dropped weight! per unit sample mass,e.

III. RESULTS

When the height was too low to break the glass tube,
visible cracks were seen. Once a visible crack was produ
fragmentation occurred suddenly. We defined the poin
which a sample began to cleave as the fragmentation cri
point. We could not obtain samples that had only visib
macrocracks, but did not fragment. We show some photo
fragments in Fig. 2. We observed that with a flat impa
low-impact-energy fragmentation events produced vert
main cracks. Therefore, vertical cleaving produces a f
large fragments@Fig. 2~a!#. In the mediate range, some larg
fragments remained@Fig. 2~b!#. For large-impact-energy
events, the largest fragment was smaller, and it was imp
sible to distinguish the main cracks from the many sm
fragments by observation@Fig. 2~c!#.

A. Cumulative distribution

First, we plotted the cumulative mass distribution of ea
fragmentation. Figure 3 shows some typical cumulative fr
ment mass distributions,N(m), for 150-mm-long samples
N(m) is defined as follows:

N~m!5E
m

`

n~m8!dm8, ~1!

wherem andn(m) are the fragment mass and the number
fragments of massm, respectively. The distribution curve
for samples of different sizes were similar to the example
Fig. 3. One can see the clear power-law dependence for
fragmented samples~far from the fragmentation transitio
point!. The distribution curves near the critical point do n
show clear power-law dependence, and they have a ra
flat part. This tendency is quite different from that of perc
lation universality. In percolation universality, the cleare
power-law dependence should appear beneath the cr
point. In the fully fragmented data curves, we can observ
04610
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region that satisfiesN(m);m2(t21), i.e., n(m);m2t. The
obtained value of the characteristic exponentt is nearly 1.5
(,2). This result conflicts with the scaling ansatz of perc
lation @11#. Therefore, we believe fragmentation criticality
differ from that of percolation. Conversely, our resultt21
.0.5 concurs with Åstro¨m’s result @10#. In addition, the
value of t obtained in this experiment is consistent wi
Hayakawa’s scaling for 2D fragmentation with a planar fa
ure wave@2#.

B. The weighted mean mass scaling

Since fragmentation events near the fragmentation crit
point have less fragments, they cannot be analyzed sta

FIG. 2. Typical fragment photos resulting from~a! small im-
parted energy,~b! intermediate region, and~c! large imparted en-
ergy. Imparted energies per unit masse for ~a!, ~b!, and ~c! are
0.098, 0.118, and 0.139~N m/g!, respectively.
5-2
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cally using only N(m). Therefore, we used thekth-order
moment of the fragment mass distribution,Mk , defined as

Mk5(
m

mkn~m!. ~2!

Since we are interested in fragmentation criticality, t
height of the falling weight was controlled near the critic
point. Despite our control of the height~imparted energy!,
the Mk data fluctuate too much due to individual differenc
in the glass tube samples, e.g., the initial density of mic
cracks and residual stress distributions. When we consid
the imparted energy as a control parameter, we could not
clear critical behavior quantitatively. For example, we sh
a log-log plot ofM2 /M1 vs e in Fig. 4~a!, whereM2 /M1 is
the weighted mean fragment mass. It is hard to say the
in Fig. 4~a! are particularly convincing about showing line
behavior. We could not consider that power-law fitting w
appropriate with confidence. Alternatively, we used mu
plicity m analysis, which Campi introduced to the analysis
nuclei fragmentation@9#. Multiplicity is defined as

m5mmin

M0

M1
, ~3!

whereM0 , M1, andmmin correspond to the number of frag
ments, the total mass of the fragments, and the smallest
off fragment mass, respectively. We fixmmin50.01 g for all
the analyses. This value usually corresponds to the sma
two-dimensionality for the samples. According to this de
nition, the fragmentation critical point corresponds tom
50. While the multiplicity is a resultant parameter, rath
than a control parameter, it can be considered the con
parameter that incorporates individual differences in
samples. Furthermore, because the multiplicity is easy

FIG. 3. Some typical cumulative fragment mass distributions
150-mm-long samples. Power-law behavior is confirmed in the
ficiently high-impact-energy curves, while the distribution curv
for low impact energy do not show a clear trend. The correspond
values ofm for plus, diamond, triangle, square, and circle marks
7.0531024, 3.3231023, 6.4731023, 2.3431022, and 2.54
31022, respectively.
04610
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measure and calculate, it has been applied to other fragm
tation systems@9#. We usem as a pseudo-control-paramet
in this paper. Certainly,m and the imparted energy are pos
tively correlated, roughly. The larger the impact energy i
parted, the largerm becomes.

In Fig. 4~b!, we plotM2 /M1 vs m of all the fragmentation
event data. It indicates the tendency toward divergence n
the critical point. The criticality appears independent
sample size. All the data match the same power-law li
Hence, we assume that the relationship between the weig
mean fragment massM2 /M1 and the multiplicitym holds as

M2

M1
;m2s. ~4!

The obtained value ofs is 0.8460.05. This value is non-
trivial becausesÞ1.

C. Scaling function

We discuss the possibility of scalingN(m) curves using
s. For largem data,N(m) curves have the same power law

r
f-

g
e

FIG. 4. Critical behavior of the weighted mean fragment ma
M2 /M1: ~a! M2 /M1 vs e. ~b! M2 /M1 vs m. The solid line indi-
cates the form of the power lawM2 /M1;m2s (s50.8460.05).
5-3
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in which the power ist21.0.5. This value is independen
of the size of the samples. This similarity allows us to c
lapse theN(m) curves of different-sized samples into a un
fied scaling function. We expect the following scaling f
distribution curves:

P~m!; f ~m/m2s!;m2(t21)g~m/m2s!, ~5!

where P(m) is the probability distribution of fragment
whose masses are larger thanm. We show the scaling resu
in Fig. 5 with the approximationP(m)5N(m)/M0. The
curves in Fig. 5 include the results for samples of three
ferent sizes~11 curves of largem data!. Figure 5 shows good
collapse ofN(m) curves into the scaling functionsf and g.
The functionf has a clear power-law regime, in which th
power is 0.5, and a unified cutoff scale. The former cor
sponds to the scaling region and the latter correspond
exponential decay due to the finite size effect. According
the scaling functiong has a constant part and a rapidly d
caying part. The flat part ing exists only for the fully frag-
mented data, because clear power-law formN(m)
;m2(t21) can be satisfied with well fractured samples. T

FIG. 5. Plots of the scaling functionsf and g approximated
using ~a! N(m)/M0; f (m/m2s) and ~b! N(m)/M0

;m2(t21)g(m/m2s). The values oft and s are obtained from
scaling Figs. 3 and 4~b! as 1.5 and 0.84, respectively.
04610
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form of scaling function might change withm, however, we
consider they will not depend on the sample size. We co
not confirm the clear collapse for smallm. More detailed
experiments are necessary to verify the scaling function
wide m range.

Bak et al. reported a similar scaling function for earth
quake statistics@12#. While they discussed the time correla
tion of earthquakes, their scaling function is analogous
ours. They concluded that the unified scaling function
earthquakes depends only on the number of earthquake
curring within the area and period considered. In Eq.~5!, our
scaling function depends on the variablex5m/m2s, which
is the normalized mass of the fragments. Moreover, the s
ing, Eq. ~5!, resembles the scaling function Åstro¨m et al.
obtained@10#.

D. Multiscaling and simple biased cascade model

Next, we discuss the behavior of the higher-order m
ments of the fragment mass distributions. We can easily
pand Eq.~4! and introduce the higher-order weighted me
fragment mass scaling as

Mk11

Mk
;m2sk. ~6!

The open circles in Fig. 6 show thesk values obtained from
fitting all the experimental data like Fig. 4~b!. While the
value sk50 is the trivial value 1,sk→` approaches a non
trivial value of '0.6.

In order to understand this behavior, we consider a sim
biased cascade model. Let us set a unit mass fragment
tially. First, this unit mass is divided into two pieces of ma
a and 12a (0<a<1). The samea-biased partition occurs
for each fragment in the next step. This cascade contin
until the imparted energy dissipates. From the above de
tion and Eq.~6!, the following equation holds at each step

FIG. 6. Higher-order weighted mean fragment mass scaling.
marks indicate the experimental results, and the solid curve i
cates the result calculated using Eq.~7! (a5

1
3 ).
5-4
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ak111~12a!k11

ak1~12a!k
522sk. ~7!

Substitutinga5 1
2 into Eq. ~7!, the trivial valuesk51 is

obtained for allk. This case corresponds to monoscali
critical fragmentation. In Fig. 6, however,sk varies withk.
This indicates a multiscaling property of critical impact fra
mentation. The solid curve in Fig. 6 is the value calcula
using Eq.~7! with a5 1

3 . The curve and experimental da
roughly agree within the error bars. Although this model
very simple, it explains the trend of the higher-order beh
ior. We conclude that fragmentation near the critical po
has a multiscaling nature. However, this only alters the pr
lem. The origin of the symmetry breaking given witha and
the relation betweena ~or sk) and t remain unsolved. The
cascade model does not seem to yield the appropriate v
of t (.1.5) directly. Since this model is too simple, it nee
to be improved using more detailed analyses and exp
ments.

Similar multiplicative model was proposed for the ener
cascade of eddy by Meneveau and Sreenivasan@13#. Accord-
ing to their result, the cascade of division into 0.3 and
can explain the energy cascade of turbulent flow. Howe
the origin of the value 0.3 has remained unsolved. The va
0.3 slightly agrees with the value13 we obtained.

IV. DISCUSSION

Kun and Herrmann have analyzed the largest fragm
mass as an order parameter@8#. In our experiments, the larg
est fragment mass had a very wide distribution, as see
Fig. 5, while the weighted mean fragment mass beha
more calmly. Figure 3 suggests that the power-law expon
might change withm. Ching et al. reported the impact-
energy dependence of the power-law exponent@14#. Their
interest focused on the very large imparted energy region
not on the neighborhood of the fragmentation critical poi
In addition, if we fit the power-law form to allN(m) curves,
the results involve large uncertainty, and do not show a c
trend. Ishii and Matsushita reported that the distribut
function for the low-impact-energy region has a log-norm
form @3#. We have not investigated the distribution of th
concrete function form. The relationship between the t
energy regions and the study of the concrete function fo
remain open to study.

Our experiments were focused on the 2D fragmenta
with the flat impact. Kun and Herrmann investigated th
.
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point impact 2D fragmentation@8#. This might be a reason o
the discrepancy between our results and their ones. H
akawa suggested that the universality of the fragmenta
depends not only on the dimensionality of fractured obje
but also on the propagation dimensionality of the failu
wave @2#. Åström et al. performed numerical simulations o
2D fragmentation with theflat expansion@10#. Their results
resemble ours in many points as described above. We be
that our results are valid for 2D fragmentation by theflat
impact to one side. Other dimensional objects or other fail
wave propagation manner may produce other values of s
ing exponents such ast and sk . Moreover, scaling law
among these exponents may exist. As written in Sec. I,
exponentt is independent of the material of fractured objec
in fully fragmented state. We guess the other critical exp
nents are also independent of that, however, it should
examined. These problems are open questions.

In general, the low-impact-energy region is difficult
study. Small differences of initial condition are enlarged
nonlinearity of fragmentation dynamics. Figure 4~a! presents
this difficulty well. Even in Fig. 4~b!, the fluctuating data can
be seen. Some unrealized experimental parameters migh
be controlled. We think that the coincidence between
experimental result and the model shown in Fig. 6 is rou
due to this reason.

In conclusion, we investigated the 2D impact fragmen
tion of brittle solids experimentally. The measured charac
istic exponents imply that the impact fragmentation of brit
solids does not belong to the percolation transition univer
ity class. Instead, we found that the weighted mean fragm
massM2 /M1 and the multiplicity parameterm are related to
the nontrivial scaling exponents. The cumulative fragmen
mass distributions of different-sized samples could be c
lapsed into the unified scaling function in the largem regime.
We calculated the generalized weighted mean fragment m
scalingMk11 /Mk;m2sk. The behavior of the multiscaling
exponentsk was modeled using a simple biased casca
partition model. The critical behavior of other fragmentati
systems should be studied in order to understand the un
sality of fragmentation phenomena in detail. Experime
with other materials, such as ceramics, or with samples
different dimensions may prove interesting.
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