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Scaling of impact fragmentation near the critical point
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We investigated two-dimensional brittle fragmentation with a flat impact experimentally, focusing on the
low-impact-energy region near the fragmentation-critical point. We found that the universality class of frag-
mentation transition disagreed with that of percolation. However, the weighted mean mass of the fragments
could be scaled using the pseudo-control-parametelitiplicity. The data for highly fragmented samples
included a cumulative fragment mass distribution that clearly obeyed a power law. The exponent of this power
law was 0.5 and it was independent of sample size. The fragment mass distributions in this regime seemed to
collapse into a unified scaling function using weighted mean fragment mass scaling. We also examined the
behavior of higher-order moments of the fragment mass distributions, and obtained multiscaling exponents that
agreed with those of the simple biased cascade model.
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I. INTRODUCTION Il. EXPERIMENTAL PROCEDURE

. . . Figure 1 is a schematic illustration of the experimental
From asteroids to nuclei, fragmentation phenomena cag paratus. We used glass tulis mm outside diameter, 2

be seen gverywhere. Many scieqtists and engineers ha m thick, and 150 mm, 100 mm, or 50 mm ldnas the
been fascinated by the fragmentation process, and much ef.tred objects. They have two-dimensiofaD) geom-
fort has been made to understand fragmentgidnin par-  gqry and it is easy to impart the impact vertically because
ticular, impact fragmentation of brittle solids has been investhey can stand by themselves. Kun and Herrmgginand
tigated by simulation and experimentall§—6]. The results  Astrom et al. [10] performed numerical simulation of 2D
have shown that cumulative fragment maes size distri-  samples.
butions exhibit a power-law dependence, in which the expo- A glass tube was put in a plastic bag, which was in turn
nent depends on the dimensionality of the fractured objectglaced between a hard stainless steel stéadjmensions
These results do not depend on the details of fragmentatiod00 mmx 500 mmx50 mm) and a stainless steel plate
such as the material the fractured object is made from or thé1l0 mm thick. The stage was fixed by placing heavy
fragmentation method. Consequently, Oddersteid#. con-  weights on it. A cylindrical brass weight with a flat bottom
cluded that brittle fragmentation is a self-organized critical(3.77 kg was dropped on the stainless steel plate vertically,
phenomenoi4,7]. and a planar failure wave propagated to the glass tube from
Cumulative distributions obey power-law dependencethe impact circle(cross section of the glass tybeConse-
when the imparted energy is sufficiently large, but brittlequently, the glass tube was cleaved by the impact. This is a
solids do not break when the imparted energy is very small.
Therefore, one might assume that there is a transition in the
fragmentation phenomenon. Recently, Kun and Herrmann
examined critical behavior in fragmentation transition and L Wweight
concluded that fragmentation transition belongs to the perco- —
lation transition universality clag8]. In addition, Campi has
shown that nuclei fragmentation has the same statistical
properties as percolatidi®]. By contrast, Astrm et al. per- Guide
formed other fragmentation model simulations and obtained =
a scaling law whose critical exponents differ from those of h
percolation[10].
While there are some simulation results, there have been | — |
no experiments on critical fragmentation. For a proper analy- = Sample
sis, the existing simulation results must be compared to ex-
perimental data. Here, we experimentally investigate brittle
fragmentation as a kind of critical phenomenon, and we re-
port experimental results for glass tube fragmentation near _|_ Stage
the critical point.

Stainless stee/ plate

Stopper

FIG. 1. Schematic illustration of the experimental apparatus.
The weight and guide poles were made of brass. Other parts were
*Electronic address: katsurag@asem.kyushu-u.ac.jp made of stainless steel or stelels the falling height of the weight.
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type of 2D fragmentation. Four poles (10 mm diamgter
were used as guide poles for the falling brass weight. Stop-
pers for the stainless steel plate were placed at each guide
pole to prevent a secondary impact. While the samples were
not annealed after the cutting processing, they had almost the
flat end. We used a level in order to check the verticality
between the weight and the stainless steel plate at each frag-
mentation. The variable in this experiment was the height the
weight was dropped from.

After fragmentation, we collected the fragments in the
plastic bag and measured the mass of each fragment with an
electronic balance. The data were analyzed, and cumulative
fragment mass distributions were obtained. We fractured a
total of 60 sample$34:150 mm, 15:100 mm, and 11:50 mm
length. We defined the falling height as a length from the
top of stainless steel plate to the bottom of the falling weight.
In our experiments, it was set in the range 61 wm
<407 mm. This range corresponds to 0.656<0.251
(Nm/g) in terms of the imparted enerdyeleased potential
energy of the dropped weighper unit sample masg,

Ill. RESULTS

When the height was too low to break the glass tube, no
visible cracks were seen. Once a visible crack was produced,
fragmentation occurred suddenly. We defined the point at
which a sample began to cleave as the fragmentation critical
point. We could not obtain samples that had only visible
macrocracks, but did not fragment. We show some photos of
fragments in Fig. 2. We observed that with a flat impact,
low-impact-energy fragmentation events produced vertical
main cracks. Therefore, vertical cleaving produces a few,
large fragment$Fig. 2(a)]. In the mediate range, some large
fragments remainedFig. 2(b)]. For large-impact-energy
events, the largest fragment was smaller, and it was impos-
sible to distinguish the main cracks from the many small
fragments by observatidrrig. 2(c)].

A. Cumulative distribution ] ] )
FIG. 2. Typical fragment photos resulting frofa) small im-

First, we plotted the cumulative mass distribution of eachyarted energy(b) intermediate region, anet) large imparted en-
fragmentation. Figure 3 shows some typical cumulative fragergy. Imparted energies per unit masdor (a), (b), and (c) are
ment mass distributiong\(m), for 150-mm-long samples. 0.098, 0.118, and 0.13N m/g), respectively.

N(m) is defined as follows:

% region that satisfiesl(m)~m~("1 ie., n(m)~m~". The
N(m)ZJ n(m’)dm’, (1) obtained value of the characteristic exponeris nearly 1.5
(<2). This result conflicts with the scaling ansatz of perco-

tJation [11]. Therefore, we believe fragmentation criticality to
wherem andn(m) are the fragment mass and the number of . )
differ from that of percolation. Conversely, our result 1

fragments of massn, respectively. The distribution curves X . .
forgsamples of different s[i)zes we)r/e similar to the example in’_vo‘5 coneurs \.N'th Astrms result_ [10]. I.n addlt_lon, the-
Fig. 3. One can see the clear power-law dependence for fully@lue Of 7 obtained in this experiment is consistent with
fragmented sample@far from the fragmentation transition ayakawa's scaling for 2D fragmentation with a planar fail-
point). The distribution curves near the critical point do not Uré Wave[2].
show clear power-law dependence, and they have a rather

flat part. This tendency is quite different from that of perco-

lation universality. In percolation universality, the clearest

power-law dependence should appear beneath the critical Since fragmentation events near the fragmentation critical
point. In the fully fragmented data curves, we can observe point have less fragments, they cannot be analyzed statisti-

m

B. The weighted mean mass scaling
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FIG. 3. Some typical cumulative fragment mass distributions for e
150-mm-long samples. Power-law behavior is confirmed in the suf- L (b) i
ficiently high-impact-energy curves, while the distribution curves B
for low impact energy do not show a clear trend. The corresponding 100 3 E
values ofu for plus, diamond, triangle, square, and circle marks are E ]
7.05x10°4, 3.32x10°3, 6.47x10°3, 2.34<10°2%, and 2.54 T ]
X 1072, respectively. =3 2 .

: o 0F =

cally using onlyN(m). Therefore, we used thkth-order § E 3

moment of the fragment mass distributiovi, , defined as ar ]

T O 150mm = 1

M= 2 mn(m). (2) 1E |2 Somm A .

6F 3

. . 3 . . . ‘Ll il Lol Ll L]
Since we are interested in fragmentation criticality, the 0.0001 0.001 0.01 o1

height of the falling weight was controlled near the critical

point. Despite our control of the heigliimparted energy H

the M data fluctuate too much due to individual differences  riG_ 4. Critical behavior of the weighted mean fragment mass
in the glass tube samples, e.g., the initial density of microm,/m,: (a) M,/M; vs e. (b) M,/M; vs u. The solid line indi-
cracks and residual stress distributions. When we consideregites the form of the power lat,/M;~u~? (o= 0.84+0.05).

the imparted energy as a control parameter, we could not find

clear critical behavior quantitatively. For example, we ShOWmeasure and calculate, it has been applied to other fragmen-
a log-log plot ofM;/M; vs € in Fig. 4@), whereM,/M; is  tation system§9]. We useu as a pseudo-control-parameter
the weighted mean fragment mass. It is hard to say the dafg this paper. Certainly, and the imparted energy are posi-

in Fig. 4(a) are particularly convincing about showing linear tjvely correlated, roughly. The larger the impact energy im-
behavior. We could not consider that power-law fitting wasparted, the larger. becomes.

appropriate with confidence. Alternatively, we used multi- | Fig. 4b), we plotM,/M; vs x of all the fragmentation
plicity u analysis, which Campi introduced to the analysis ofevent data. It indicates the tendency toward divergence near

nuclei fragmentatioi9]. Multiplicity is defined as the critical point. The criticality appears independent of
sample size. All the data match the same power-law line.
p=m, % 3 Hence, we assume that the relationship between the weighted
MM, mean fragment madd , /M, and the multiplicityu holds as
whereM,, M, andm,,, correspond to the number of frag- M, .
ments, the total mass of the fragments, and the smallest cut- ,\/TlN ' (4)

off fragment mass, respectively. We fi,,,=0.01 g for all

the analyses. This value usually corresponds to the smalle$f,e gptained value of is 0.84+0.05. This value is non-
two-dimensionality for the samples. According to this defi-ivial becauser+ 1.

nition, the fragmentation critical point corresponds o
=0. While the multiplicity is a resultant parameter, rather
than a control parameter, it can be considered the control
parameter that incorporates individual differences in the We discuss the possibility of scalifg(m) curves using
samples. Furthermore, because the multiplicity is easy tor. For largew data,N(m) curves have the same power law,

C. Scaling function
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(b) marks indicate the experimental results, and the solid curve indi-
cates the result calculated using Ed). (a=3).
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form of scaling function might change witta, however, we
consider they will not depend on the sample size. We could
not confirm the clear collapse for small. More detailed
experiments are necessary to verify the scaling functions in
wide p range.

Bak et al. reported a similar scaling function for earth-
guake statistic§12]. While they discussed the time correla-
tion of earthquakes, their scaling function is analogous to
ours. They concluded that the unified scaling function for

0.001 0.01 0.1 1 earthquakes depends only on the number of earthquakes oc-
m/p° curring within the area and period considered. In &9 our
scaling function depends on the variale m/x~ 7, which

FIG. 5. Plots of the scaling functionsand g approximated is the normalized mass of the fragments. Moreover, the scal-
using (@ N(mM)/Mo~f(m/n™?) and (b)) N(mM)/M, ing, Eq. (5), resembles the scaling function Asmoet al.
~m~"Yg(m/~ 7). The values ofr and o are obtained from  obtained[10].
scaling Figs. 3 and(®) as 1.5 and 0.84, respectively.

1
T
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in which the power is;r—1=0.5. This value is independent D. Multiscaling and simple biased cascade model
of the size of the samples. This similarity allows us to col-
lapse theN(m) curves of different-sized samples into a uni-
fied scaling function. We expect the following scaling for
distribution curves:

Next, we discuss the behavior of the higher-order mo-
ments of the fragment mass distributions. We can easily ex-
pand Eq.(4) and introduce the higher-order weighted mean
fragment mass scaling as
P(m)~f(m/u=7)~m~ " Dg(m/u™), 5

Mii1
where P(m) is the probability distribution of fragments My H
whose masses are larger thanWe show the scaling result
in Fig. 5 with the approximatiorP(m)=N(m)/Mg,. The
curves in Fig. 5 include the results for samples of three dif-The open circles in Fig. 6 show thsg, values obtained from
ferent sizeg11 curves of largew datg. Figure 5 shows good fitting all the experimental data like Fig.(d). While the
collapse ofN(m) curves into the scaling functiorfsand g. value o - is the trivial value 1,0_,.., approaches a non-
The functionf has a clear power-law regime, in which the trivial value of ~0.6.
power is 0.5, and a unified cutoff scale. The former corre- In order to understand this behavior, we consider a simple
sponds to the scaling region and the latter corresponds toiased cascade model. Let us set a unit mass fragment ini-
exponential decay due to the finite size effect. Accordinglytially. First, this unit mass is divided into two pieces of mass
the scaling functiorg has a constant part and a rapidly de-a and 1-a (0<a<1). The same-biased partition occurs
caying part. The flat part ig exists only for the fully frag- for each fragment in the next step. This cascade continues
mented data, because clear power-law forhi(m) until the imparted energy dissipates. From the above defini-
~m~ ("1 can be satisfied with well fractured samples. Thetion and Eq.(6), the following equation holds at each step:

~ %k, (6)
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at iy (1—a)ktt pointimpact 2D fragmentatiof8]. This might be a reason of
. =27k (7)  the discrepancy between our results and their ones. Hay-
a‘+(l-a) akawa suggested that the universality of the fragmentation

depends not only on the dimensionality of fractured object,
but also on the propagation dimensionality of the failure

Substitutinga=3 into Eq. (7), the trivial valueo,=1 is

critical fragmentation. In Fig. 6, howeves;, varies withk.
This indicates a multiscaling property of critical impact frag-
mentation. The solid curve in Fig. 6 is the value calculate

; SO0 ,
using Eq.(7) with a=3. The curve and experimental data ;4 1o one side. Other dimensional objects or other failure

roughly agree within the error bars. Although this model iswave ropbagation manner mav produce other values of scal-
very simple, it explains the trend of the higher-order behav- propag yp

. : " ~“ing exponents such as and o. Moreover, scaling law
ior. We conclude that fragmentation near the critical point g exp k g

h iscali ¢ Y thi v alters ih bamong these exponents may exist. As written in Sec. |, the
as a muitiscaiing nature. However, this only alters the pro exponentr is independent of the material of fractured objects
lem. The origin of the symmetry breaking given wehand

i ; in fully fragmented state. We guess the other critical expo-
the relation betweean (or o) and r remain unsolved. The y rag g b

: . nents are also independent of that, however, it should be
cascade model does not seem to yield the appropriate valyg - inad. These problems are open questions

of 7 (=1.5) directly. Since this model is too simple, it needs In general, the low-impact-energy region is difficult to

to be improved using more detailed analyses and experiy,qy “small differences of initial condition are enlarged by

ments. : : ; : :
o N nonlinearity of fragmentation dynamics. Figur@ypresents
Similar multiplicative model was proposed for the energyg gitficuity well. Even in Fig. 40), the fluctuating data can
cascade of eddy by Meneveau and SreeniviS8nAccord- 1o seen Some unrealized experimental parameters might not

ing to the@r result, the cascade of division into 0.3 and 0'7be controlled. We think that the coincidence between the
can explam the energy cascade of 'turbulent flow. |_|oweverexperimental result and the model shown in Fig. 6 is rough
the origin of the value 0.3 has remained unsolved. The valuaue to this reason

0.3 slightly agrees with the valug we obtained. In conclusion, we investigated the 2D impact fragmenta-
tion of brittle solids experimentally. The measured character-
IV. DISCUSSION istic exponents imply that the impact fragmentation of brittle

Kun and Herrmann have analyzed the largest fragmerﬁonds does not belong to the percolation transition universal-
mass as an order paramefigl. In our experiments, the larg- ity class. Instead, we found that the weighted mean fragment
est fragment mass had a very wide distribution, as seen ifffasSM2/M; and the multiplicity parameteu are related to
Fig. 5, while the weighted mean fragment mass behavel1® nNontrivial scaling exponent. The cumulative fragment
more calmly. Figure 3 suggests that the power-law exponerf'@SS d_|str|but|ons_, _of dlffe_rent—S|ze_d samples could_ be col-
might change withx. Ching et al. reported the impact- lapsed into the unified scal_mg fun(_:tlon in the laygeegime.
energy dependence of the power-law exporiddi. Their We calculated the generalized weighted mean fragment mass
interest focused on the very large imparted energy region aneFiNgM . 1/My~ .~ The behavior of the multiscaling

not on the neighborhood of the fragmentation critical point.8XPonentoy was modeled using a simple biased cascade
In addition, if we fit the power-law form to aN(m) curves, ~Partition model. The critical behavior of other fragmentation

the results involve large uncertainty, and do not show a clea?yStéms should be studied in order to understand the univer-
trend. Ishii and Matsushita reported that the distributionS@lity of fragmentation phenomena in detail. Experiments
function for the low-impact-energy region has a Iog-normaIW_'th other_ mate_nals, such as ceramics, or with samples of
form [3]. We have not investigated the distribution of the différent dimensions may prove interesting.
concrete function form. The relationship between the two
energy regions and the study of the concrete function form ACKNOWLEDGMENTS
remain open to study.
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2D fragmentation with thdlat expansion10]. Their results
esemble ours in many points as described above. We believe
hat our results are valid for 2D fragmentation by e
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